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Motivation 

Earlier AgMIP integrated assessments focused on sub-national regions (on the scale of a district 

or network of neighboring villages) in order to characterize farming systems, climate hazards, 

agricultural vulnerabilities and opportunities for adaptation (Rosenzweig et al., 2015; 2021).  

These regions were selected according to their prominence as agricultural production areas, 

representative farming systems, engagement with local stakeholders and the availability of 

climate, crop, livestock and economic data.  Results in these sub-national regions proved useful 

in assessing climate risk and the potential for a number of adaptation options; however, 

uncertainty concerning the extent to which these results could be transferred to other 

regions/systems or scaled up to national scales limited the overall utility of these findings for 

broader climate resilience planning.  This project therefore explored a number of approaches to 

relate local and national scale conditions in order to understand where findings and key messages 

would likely be transferable.   

 

Approach 

Similarity between regional systems can be characterized by a combination of climatic 

conditions, biophysical conditions on the farm, and socioeconomics. Further distinction could be 

determined by similarity today (i.e., under present climate and farm systems) and similarity in 

the future (i.e., under future climate and farm systems).  Here we demonstrate agroclimatic 

similarity analyses over the Zimbabwe component of the AgMIP/CLARE project, focusing on 

the Nkayi district and household survey that was the focus of previous analyses and connecting 

into ongoing efforts within the country to update agro-ecological zones (AEZ) for the first time 

since the 1960s.  Similar analyses were initiated in Ghana and Senegal as a proof of transferable 

approaches, but these are not the focus of discussion here. 

 

The core approach develops a portfolio of observational and modeled layers that characterize one 

aspect of farm conditions across Zimbabwe (climate, crop, livestock, and economics; today and 

in future), determines conditions in Nkayi for that layer, establishes a range of conditions 

considered “similar” to the Nkayi condition for each layer, then identifies other regions in 

Zimbabwe that are within this range and therefore similar to Nkayi and likely to face similar 

challenges and opportunities to the farm households studied there.  Details of the specific 

biophysical, current climate (focusing on the maize-growing season), future climate (under a 

high emissions [RCP8.5] scenario for mid-century [2040-2070] conditions), climate change 

(future compared to present), and socioeconomic layers are provided in Table 1 which details 

each variable layer name, unit, spatial resolution, temporal resolution, time period, Nkayi value, 

Nkayi “similarity” range, and data description.  Layers include biophysical information from 

satellite vegetation indices (such as the Enhanced Vegetation Index; EVI), land variables 
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(including soil moisture and established agro-ecological zones, AEZ, updated in 2020 by the 

Zimbabwe National Geospatial and Space Agency), climate variables including average growing 

season conditions (e.g., temperature, precipitation), the frequency of extreme climate events 

(e.g., days where temperatures exceed 35℃), and socioeconomic conditions (e.g., livelihood 

zones and cattle density).  As climate challenges reflect both difficult conditions as well as the 

rate of change that forces responses, climate conditions are given for current climate, future 

climate, and the amount of climate change.   

 

Table 1: Layers factored into agroclimatic similarity analysis for Nkayi, Zimbabwe. 
 

Variable Layer Name Units 

Product 

Spatial 

Resolution 

Product 

Temporal 

Resolution Evaluation Period 

Nkayi farms avg 

value Similarity Range Product Description 

B
io

p
h

y
si

ca
l 

L
a
y
er

s 

Mean NDVI* NA 250 m 16-Day 2000-2020 -- -- 

MOD13Q1 MODIS/Terra Vegetation Indices 16-
Day L3 Global 250m SIN Grid V061 (Didan, 2021) 

 

Min NDVI* NA 250 m 16-Day 2019- 2020 -- -- 

MOD13Q1 MODIS/Terra Vegetation Indices 16-
Day L3 Global 250m SIN Grid V061 (Didan, 2021) 

 

Max NDVI* NA 250 m 16-Day 2019- 2020 -- -- 

MOD13Q1 MODIS/Terra Vegetation Indices 16-
Day L3 Global 250m SIN Grid V061 (Didan, 2021) 

 

Mean EVI NA 1km 16-Day 2000-2020 0.2661 0.2394 to 0.2927 

MOD13A2 MODIS/Terra Vegetation Indices 16 

Day L3 Global 1km SIN Grid V61 (Didan, 2021) 

 

Min EVI NA 1km 16-Day 2000-2020 0.0935 0.0692 to 0.0622 

MOD13A2 MODIS/Terra Vegetation Indices 16 

Day L3 Global 1km SIN Grid V61 (Didan, 2021) 

 

Max EVI NA 1km 16-Day 2000-2020 0.6252 0.5462 to 0.6008 

MOD13A2 MODIS/Terra Vegetation Indices 16 

Day L3 Global 1km SIN Grid V61 (Didan, 2021) 

 

DOY min EVI* 
Julian 

Day 
1km 16-Day 2000-2020 --  

MOD13A2 MODIS/Terra Vegetation Indices 16 

Day L3 Global 1km SIN Grid V61 (Didan, 2021) 

 

DOY max EVI* 
Julian 

Day 
1km 16-Day 2000-2020 70 65-75 

MOD13A2 MODIS/Terra Vegetation Indices 16 

Day L3 Global 1km SIN Grid V61 (Didan, 2021) 
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Land Cover* Classes 1km 10-year 2010-2019 -- -- 

MCD12Q2 Land Cover Dynamics Yearly L3 

Global 1km (Friedl et al, 2019) 

 

Soil Moisture Profile 

Root-

zone 

fraction 

10 Km 
3-Day 

composites 
2016-2020 0.25 0.225 to 0.275 

NASA- USDA Enhanced SMAP Global Soil 

Moisture Data (Mladenova et al 2020) 

Subsurface Soil Moisture mm 10 Km 
3-Day 

composites 
2016-2020 25.87 23.283 to 28.457 

NASA- USDA Enhanced SMAP Global Soil 

Moisture Data (Mladenova et al 2020) 

 

Agro-Ecological Zone (AEZ) NA NA 1-year 2020 III & IV III & IV 
Zimbabwe National Geospatial and Space Agency 
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*
*
 # Extreme Heat Days  

(Tmax > 35 ℃) 
Days 0.5˚ Daily 1990-2020 5 4 to 6 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

 

Total Precipitation 
 

mm 0.5˚ Daily 1990-2020 636 572 to 700 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

 

Mean Temperature 
 

℃ 0.5˚ Daily 1990-2020 23.2 20 to 25 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

# Rainy Days  

(P > 1 mm) 
Days 0.5˚ Daily 1990-2020 59 52 to 65 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 
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*
*
 

# Extreme Heat Days  

(Tmax > 35 ℃) 
Days 0.5˚ Daily 

2040-2070 

(SSP585) 
30.5714 27 to 34 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

Total Precipitation mm 0.5˚ Daily 
2040-2070 

(SSP585) 
672.8741 605 to 740 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

Mean Temperature ℃ 0.5˚ Daily 
2040-2070 

(SSP585) 
25.57 23 to 28 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

# Rainy Days  

(P > 1 mm) 
Days 0.5˚ Daily 

2040-2070 

(SSP585) 
57.92 52 to 64 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 
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*
*

 Change in  # Extreme Heat 

Days (Tmax > 35 ℃) 
Days 0.5˚ 

30-year 

means 

SSP585 2040-2070 

vs. 1990-2020 
25.5 23 to 28 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

Change in Total Precipitation 
% of 

baseline 
0.5˚ 

30-year 

means 

SSP585 2040-2070 

vs. 1990-2020 
-0.6783 -0.61 to -0.75 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 

 

Change in Mean Temperature ℃ 0.5˚ 
30-year 

means 

SSP585 2040-2070 

vs. 1990-2020 
2.38 2.28 to 2.45 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 
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Change in # Rainy Days  

(P > 1 mm) 
Days  0.5˚ 

30-year 

means 

SSP585 2040-2070 

vs. 1990-2020 
-1.215 -1.0 to -1.33 

ISIMIP3 Ensemble of 5 Bias-adjusted General 

Circulation Models (GCMs; Lange et al., 2019) 
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Population Density 
 persons 

/ km 
1 Km 5-year 2000 20.98 18 to 22 

Gridded Population of the World, Version 4 

(GPWv4.11): Population Density Adjusted to 

Match 2015 Revision of UN WPP Country Totals 

(CIESIN - Columbia University. 2018.) 

 

Population Density 
 persons 

/ km 
1 Km 5-year 2020 26.146 23.5 to 28.75 

Gridded Population of the World, Version 4 

(GPWv4.11): Population Density Adjusted to 

Match 2015 Revision of UN WPP Country Totals 

(CIESIN - Columbia University. 2018.) 

 

Livestock Density- Cattle 
# cattle / 

pixel 
0.83˚ 1-year 2010 1527.128 1374 to 1680 

Gridded Livestock of the World database (GLW 

3)- Global Cattle Distribution (Gilbert et al, 2018) 
  

Livelihoods* NA NA 1-year 2020 ZW09 ZW09, 16, 17, 21, 24  
Zimbabwe National Geospatial and Space Agency 

(ZINGSA), 2020 

* Layer not a focus of current analyses 
** Calculated over the Maize growing season for each ½ degree pixel (Müller et al., 2017) 

 

Similarity ranges for quantitative variables were determined by first calculating the average of 

the values for the 7 villages included in the Nkayi farm survey.  A first guess of ±10% set the 

range of similarity, with each layer further examined to ensure that this range of similarity helped 

distinguish conditions across Zimbabwe (that is, a layer where the whole country is considered 

“similar” does not add distinguishing regional information).  Combinations of layers were then 

used to provide similarity “scores” for each part of Zimbabwe that reflect the number of layers 

within a given set that are similar to Nkayi.  These scores are not weighted toward any individual 

layers other than in the selection of the inclusive set, so the analysis below forms a starting point 

for deeper analysis depending on the specific interventions that may target hazard resilience in 

vulnerable communities.   

 

Key findings 

No single combination of layers is sufficient to capture the many differences in Zimbabwe’s 

diverse landscape, so we examine a variety of layer combinations to provide multiple 

perspectives on the common challenges and unique characteristics of agroclimatic conditions. 

 

1. Current biophysical similarity 

Figure 1 highlights areas within Zimbabwe that have a similar seasonal progression of 

vegetation to that observed in Nkayi.  The average EVI describes the overall level of vegetation, 

which is a proxy for overall productivity and potential fodder for livestock.  Maximum and 

minimum EVI values describe the annual amount of vegetation growth and dieback that 

highlights the best conditions and the lean months, while the day of the year for maximum EVI 

pins the vegetation growth to major seasonal patterns of temperature and rainfall that could 

distinguish different regional climates.  Put together as a similarity score, there is no clear 

regional pattern of EVI characteristics that distinguish different portions of Zimbabwe, indicating 

that the overall vegetation pattern is quite similar across the country.  Within each region there is 

strong heterogeneity, however, indicating sharp patterns in land management and contrasts 

between agricultural lands and unmanaged lands that could be natural or utilized for grazing.   

 

file://///Users/sanketa/Downloads/Gridded%20Livestock%20of%20the%20World%20https:/dataverse.harvard.edu/dataset.xhtml%253fpersistentId=doi:10.7910/DVN/GIVQ75
file://///Users/sanketa/Downloads/Gridded%20Livestock%20of%20the%20World%20https:/dataverse.harvard.edu/dataset.xhtml%253fpersistentId=doi:10.7910/DVN/GIVQ75
file://///Users/sanketa/Downloads/Gridded%20Livestock%20of%20the%20World%20https:/dataverse.harvard.edu/dataset.xhtml%253fpersistentId=doi:10.7910/DVN/GIVQ75
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Figure 1: Current biophysical similarity score calculated from 4 similarity layers drawn from the 2000-2020 period: mean EVI, 

annual maximum EVI, annual minimum EVI, and the day of the year on which maximum EVI is observed.   

 

 

2. Current climate similarity 

The mean and extreme characteristics of Nkayi climate is similar to a broad swath across the 

center of Zimbabwe, as well as portions of the Northeast (Figure 3.5.2).  The southernmost 

portions of the country share few characteristics with Nkayi climate.   

 

 
Figure 2: Current climate similarity score calculated from 4 similarity layers drawn from the 1990-2020 period: mean 

temperature, total precipitation, the number of extreme heat days (Tmax > 35℃), and the number of rainy days (P>1mm).  The 

locations of the 7 surveyed Nkayi villages are shown as white circles within the broader Nkayi region.  

 

3. Current agroclimatic similarity 
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The combination of core climate variables, soil moisture, and vegetation seasonal cycle reveals a 

slight Northwest to Southeast swath of the country that is similar to Nkayi (Figure 3.5.3).  In 

contrast to the climate-only similarity that was oriented in a more West-East pattern, interactions 

with soil conditions and vegetation show that regions along this more diagonal axis are likely to 

have similar conditions for agriculture.  Comparisons against the livelihoods zone layer 

(ZINGSA, 2020) indicate that many of the zones that are highly similar to Nkayi on this 

combination of layers are also areas with prominent smallholder agriculture and mixed cereal-

livestock systems. These zones are most likely to face challenges to agricultural adaptation and 

resilience planning that were extensively explored at Nkayi.  Note that the resolution of the EVI 

seasonality layer is finer than the other layers, with many pixels similar across all 4 layers even 

as the other layers set the broader patterns. 

 

 
Figure 3: Current agroclimatic similarity score calculated from 4 similarity layers drawn from recent observations: mean 

temperature, total precipitation, soil moisture profile saturation, and day of year for maximum EVI.  The locations of the 7 

surveyed Nkayi villages are shown as white circles within the broader Nkayi region.  

 

 

4. Climate change rate similarity 

The rate of climate change experienced provides another perspective on adaptation and resilience 

planning similarity across regions within Zimbabwe (Figure 3.5.4).  Climate change in Nkayi is 

projected to be similar that for a North to South swath of Zimbabwe across the slightly more 

Western portion of the country.  These regions may not have the same future conditions but are 

facing a similar degree of disruption in terms of climate changes.  The pattern of changes for 

lower emissions scenarios (RCP4.5) examined in this study are similar even as the extent of 

climate change is reduced. 
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Figure 4: Climate change rate similarity score calculated from 4 similarity layers calculated as the difference between future 

(RCP8.5 2040-2070) and current (1990-2020) periods: change in mean temperature, change in total precipitation, change in the 

number of extreme heat days (Tmax > 35℃), and change in the number of rainy days (P>1mm).  The locations of the 7 surveyed 

Nkayi villages are shown as white circles within the broader Nkayi region.  

 

 

5. Future climate similarity 

In the RCP8.5 mid-century (2040-2070) period Nkayi will continue to have a climate similar to 

the central part of the country, although it will be increasingly similar to the Northwestern 

portions of the Zimbabwe (Figure 3.5.5).  In this sense adaptation and resilience planning 

actions between these regions will likely converge to reflect common conditions and climate 

challenges for agriculture. 

 

 
Figure 5: Future climate similarity score calculated from 4 similarity layers drawn from the RCP8.5 2040-2070 period: mean 

temperature, total precipitation, the number of extreme heat days (Tmax > 35℃), and the number of rainy days (P>1mm).  The 

locations of the 7 surveyed Nkayi villages are shown as white circles within the broader Nkayi region.  
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6. Current climates that are similar to projected Nkayi climate  

A comparison between Nkayi’s future climate and the present climate of Zimbabwe shows that 

future conditions in Nkayi will be similar to conditions currently experienced in the northern 

portions of Zimbabwe, particularly those areas in the Northwest and Northeast (Figure 3.5.6). 

Adaptation and resilience planners in Nkayi might therefore look to present systems and climate 

risk planning in these portions of the country to anticipate solutions for their future challenges. 

 

 
Figure 6: Current climates that are similar to Nkayi’s future climate; thresholds drawn from Nkayi’s future climate projection 

and applied to current climate layers.  Similarity score calculated from 4 similarity layers drawn from the 1990-2020 period: 

mean temperature, total precipitation, the number of extreme heat days (Tmax > 35C), and the number of rainy days (P>0.1mm).  

The locations of the 7 surveyed Nkayi villages are shown as white circles within the broader Nkayi region.  

 

 

7. Broad agro-climatic similarity 

Figure 3.5.7 utilizes a broad set of biophysical, land, current climate and socioeconomic layers 

to identify regions that have strong acro-climatic similarity to Nkayi.  The use of this many 

layers is instructive, but further analysis is needed to examine the specific combinations of 

similar layers for any given pixel. Overall similarity is strongest in the regions closest to the 

Nkayi farms and generally is reduced with distance, however higher similarity scores extend East 

into the center of the country and are also seen in the Northeast (between Mutoko and Mount 

Darwin) and far Western portions of Zimbabwe (southwest of Victoria Falls).  Southernmost 

regions (near Beitbridge) and the Eastern area around Nyanga National Park are least similar, 

and therefore are not likely to be suitable for the adaptation and resilience planning efforts 

developed for Nkayi.   
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Figure 7: Broad agro-climatic similarity score calculated from 12 similarity layers drawn from recent observational periods: 

mean temperature, total precipitation, the number of extreme heat days (Tmax > 35℃), the number of rainy days (P>1mm), 

Agro-ecological zone, population density, soil moisture profile saturation, cattle density, mean EVI, annual maximum EVI, 

annual minimum EVI, and day of year for the maximum EVI.  The locations of the 7 surveyed Nkayi villages are shown as white 

circles within the broader Nkayi region.  

 

 

Opportunities for further application 

Agroclimatic similarity analysis for Zimbabwe shows that adaptation and resilience challenges 

fall along geographical patterns that may be useful in efficiently transferring successful 

approaches from Nkayi to the broader country.  In many cases Nkayi results are broadly 

applicable, but analysis indicates that there are not clear and coherent regions with identical 

conditions given the heterogeneity of climate and agricultural conditions within Zimbabwe.  

Other portions of Zimbabwe (or other countries) may be more broadly representative than Nkayi, 

and this type of analysis may identify wide areas where adaptation and resilience planning may 

be useful in less heterogeneous countries.  Preliminary explorations of this approach in Ghana, 

for example, show strong zonal bands associated with the Savanah, Sahel, and tropical forest 

portions of the country, while Senegal analyses indicate strong coastal and inland patterns.   

 

The current approach can also be improved by better connecting the range of “similar” 

conditions to specific agricultural vulnerability and adaptation and resilience plan tolerances.  
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For example, in the above analyses areas were considered similar to Nkayi if their total maize 

growing season precipitation was within 10% of the Nkayi value; however, additional 

information about farm system tolerances could more accurately set the range of plausible values 

for a given adaptation option and thus be more useful for planning.  Continued engagement with 

local experts would also help identify additional layers and similarity thresholds that reflect the 

decision processes of stakeholders within the region (e.g., which seeds to plant, where to invest 

in livestock, whether irrigation is practical). Specific policies could also be targeted to a designed 

set of conditions that could be explored through geospatial analysis of these layers, either 

through a combined score based on custom ranges or on a multi-layer set of criteria to identify 

minimal conditions indicative of success.  

 

Agroclimatic similarity analysis could also be combined with gridded crop modeling efforts 

(such as those piloted in Ghana) and national economic modeling (such as that piloted in 

Senegal) to build more efficient modeling systems that prioritize diverse systems or those with 

the highest economic impact or population vulnerabilities.  Improved information about specific 

policies, adaptation investments, farm system transformations, and crop system responses to 

climate changes may also be factored into future analyses to inform more useful planning efforts. 
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